{"id":65,"date":"2020-03-13T01:00:30","date_gmt":"2020-03-13T01:00:30","guid":{"rendered":"http:\/\/www.rib.okayama-u.ac.jp\/RECTOR\/?page_id=65"},"modified":"2025-12-09T01:27:33","modified_gmt":"2025-12-09T01:27:33","slug":"publications","status":"publish","type":"page","link":"https:\/\/www.rib.okayama-u.ac.jp\/RECTOR\/index.php\/publications\/","title":{"rendered":"Publications"},"content":{"rendered":"
Published manuscripts with the affiliation of IPSR, University of Okayama
\n*Corresponding author<\/p>\n
2025<\/strong><\/p>\n Dao* O, Burlacot A, Buchert F, Bertrand M, Auroy P, Stoffel C, Madireddi SK, Irby J, Hippler M<\/strong>, Peltier G, Li-Beisson* Y (2025) Cyclic and pseudo-cyclic electron pathways play antagonistic roles during nitrogen deficiency in Chlamydomonas reinhardtii<\/em>. Hoepfner LM, Nievergelt AP, Matrino F, Scholz M, Foster HE, Rodenfels J, von Appen A, Hippler* M<\/strong>, Pigino* G (2025) Unwrapping the Ciliary Coat: High-Resolution Structure and Function of the Ciliary Glycocalyx. Emrich-Mills TZ, Proctor MS, Degen GE, Jackson PJ, Richardson KH, Hawkings FR, Buchert F, Hitchcock A, Hunter CN, Mackinder LCM, Hippler M<\/strong>, Johnson* MP (2025) Tethering ferredoxin-NADP+<\/sup> reductase to photosystem I promotes photosynthetic cyclic electron transfer. Milrad Y, Wegemann D, Kuhlgert S, Scholz M, Younas M, Vidal-Meireles A, Hippler* M<\/strong> (2025) Insights into plastocyanin-cytochrome b<\/em>6<\/sub>f<\/em> complex formation: The role of plastocyanin phosphorylation. Ruaud S, Notzold SI, Waller M, Galbier F, Mousavi SS, Charran M, Mateos JM, Zeeman S, Baily A, Baroux C, Hippler M<\/strong>, Wicke S, Szovenyi* P (2025) Molecular underpinnings of hornwort CO2<\/sub> concentrating mechanisms: subcellular localization of putative key molecular components in the model hornwort Anthoceros agrestis<\/em>. 2024<\/strong><\/p>\n Ozawa S-I<\/strong>, Zhang G, Sakamoto* W<\/strong> (2024) Dysfunction of Chloroplast Protease Activity Mitigates pgr5<\/em> Phenotype in the Green Algae Chlamydomonas reinhardtii<\/em>. Kosugi* M, Ohtani S, Hara K, Toyoda A, Nishide H, Ozawa S-I<\/strong>, Takahashi Y, Kashino Y, Kudoh S, Koike H, Minagawa J (2024) Characterization of the far-red light absorbing light-harvesting chlorophyll a\/b binding complex, a derivative of the distinctive Lhca gene family in green algae. Mosebach L, Ozawa S.-I<\/strong>, Younas M, Xue, H, Scholz M, Takahashi Y, Hippler* M<\/strong> (2024) Chemical Protein Crosslinking-Coupled Mass Spectrometry Reveals Interaction of LHCI with LHCII and LHCSR3 in Chlamydomonas reinhardtii<\/i>. Hammel A, Cucos LM, Caras I, Ionescu I, Tucureanu C, Tofan V, Costache A, Onu A, Hoepfner L, Hippler M<\/strong>, Neupert J, Popescu CI, Stavaru* C, Branza-Nichita* N, Bock* R (2024) The red alga Porphyridium<\/em> as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein. Hippler* M<\/strong>, Khosravitabar* F (2024) Light-Driven H2<\/sub> Production in Chlamydomonas reinhardtii<\/em>: Lessons from Engineering of Photosynthesis. Brunje A, Fussl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI<\/strong>, Sakamoto W<\/strong>, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier* I (2024) The plastidial protein acetyltransferase GNAT1 forms a complex with GNAT2, yet their interaction is dispensable for state transitions. Kodru S, Nellaepalli* S, Ozawa SI<\/strong>, Satoh C, Kuroda H, Tanaka R, Guan K, Kobayashi M, Tran P, McCarthy S, Wakao S, Niyogi KK, Takahashi* Y (2024) Geranylgeranylated-chlorophyll-protein complexes in lhl3<\/em> mutant of the green alga Chlamydomonas reinhardtii<\/em>. 2023<\/strong><\/p>\n Younas M, Scholz M, Marchetti GM, Hippler* M<\/strong> (2023) Remodeling of algal photosystem I through phosphorylation. Akiyama K, Ozawa SI<\/strong>, Takahashi Y, Yoshida K, Suzuki T, Kondo K, Wakabayashi* Ki, and Hisabori* T (2023) Two specific domains of the \u03b3 subunit of chloroplast Fo<\/sub>F1<\/sub> provide redox regulation of the ATP synthesis through conformational changes. Scholz M, Zinzius K, Hippler M<\/strong> (2023) The chloroplast in a changing environment: from genome to proteome. In Arthur Grossman, Francis-Andr\u00e9 Wollman, eds, The Chlamydomonas Sourcebook Volume 2: Organellar and Metabolic Processes, Ed 3 Vol 2. Academic Press, San Diego, pp 413-442 Ozawa* SI<\/strong>, Buchert F, Reuys R, Hippler M<\/strong>, Takahashi Y (2023) Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b<\/em>6<\/sub>f<\/em> under acidic lumenal conditions. Zinzius K, Marchetti GM, Fischer R, Milrad Y, Oltmanns A, Kelterborn S, Yacoby I, Hegemann P, Scholz M, Hippler* M<\/strong> (2023) Calredoxin regulates the chloroplast NADPH-dependent thioredoxin reductase in Chlamydomonas reinhardtii<\/em>. Kato Y, Kuroda H, Ozawa SI<\/strong>, Saito K, Dogra V, Scholz M, Zhang G, de Vitry C, Ishikita H, Kim C, Hippler M<\/strong>, Takahashi Y, Sakamoto* W<\/strong> (2023) Sommer K, Reuter S, Elinkmann M, Kohrer A, Quarles CD, Jr., Hippler M<\/strong>, Karst* U (2023) Species-dependent uptake of gadolinium in Chlamydomonas reinhardtii<\/em> algae. Chaux F, Jarrige D, Rodrigues-Azevedo M, Bujaldon S, Caspari OD, Ozawa S-I<\/strong>, Drapier D, Vallon O, Choquet Y, de Vitry* C (2023) 2022<\/strong><\/p>\n Buchert* F, Scholz M, and Hippler* M<\/strong> (2022) Electron transfer via cytochrome b<\/em>6<\/sub>f<\/em> complex displays sensitivity to Antimycin A upon STT7 kinase activation. Rathod M K, Sreedhar N, Ozawa S-I<\/strong>, Kuroda H, Kodama N, Bujaldon S, Wollman F-A, and Takahashi* Y (2022) Assembly Apparatus of Light-Harvesting Complexes; Identification of Alb3.1-cpSRP-LHCP Complexes in the Green Alga Chlamydomonas reinhardtii<\/em>. Marchetti G M, Fusser F, Singh R K, Brummel M, Koch O, Kummel D, and Hippler* M<\/strong> (2022) Structural analysis revealed a novel conformation of the NTRC reductase domain from Chlamydomonas reinhardtii<\/em>. Maeda H, Takahashi K, Ueno Y, Sakata K, Yokoyama A, Yarimizu K, Myouga F, Shinozaki K, Ozawa S-I<\/strong>, Takahashi Y, Tanaka A, Ito H, Akimoto S, Takabayashi A, and Tanaka* R (2022) Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana.<\/em> Ho T T H, Schwier C, Elman T, Fleuter V, Zinzius K, Scholz M, Yacoby I, Buchert F, and Hippler* M<\/strong> (2022) Photosystem I light-harvesting proteins regulate photosynthetic electron transfer and hydrogen production Elman T, Ho TTH, Milrad Y, Hippler M<\/strong>, Yacoby* I (2022) Article Enhanced chloroplast-mitochondria crosstalk promotes ambient algal-H2 production. Cell Reports Physical Science <\/em>3 Naschberger A, Mosebach L, Tobiasson V, Kuhlgert S, Scholz M, Perez-Boerema A, Ho TTH, Vidal-Meireles A, Takahashi Y, Hippler* M<\/strong>, and Amunts* A (2022) Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nat Plants<\/em> 8<\/strong>: 1191-1201 2021<\/strong><\/p>\n Nishioka K, Kato* Y, Ozawa S-I<\/strong>, Takahashi Y, and Sakamoto* W<\/strong> (2021). Phos-tag-based approach to study protein phosphorylation in the thylakoid membrane. Caspy I, Fadeeva M, Kuhlgert S, Borovikova-Sheinker A, Klaiman D, Masrati G, Drepper F, Ben-Tal N, Hippler* M<\/strong>, and Nelson N* (2021) Structure of plant photosystem I-plastocyanin complex reveals strong hydrophobic interactions. Hippler* M<\/strong>, Minagawa* J, and Takahashi* Y (2021) Photosynthesis and Chloroplast Regulation-Balancing Photosynthesis and Photoprotection under Changing Environments. Hippler* M<\/strong>, and Nelson* N. (2021) The Plasticity of Photosystem I. Richardson K H, Wright J J, Simenas M, Thiemann J, Esteves A M, McGuire G, Myers W K, Morton J J L, Hippler M<\/strong>, Nowaczyk M M, Hanke* G T, and Roessler* M M (2021) Functional basis of electron transport within photosynthetic complex I. 2020<\/strong><\/p>\n Buchert F, Mosebach L, Gabelein P, Hippler* M\u00a0<\/strong>(2020) PGR5 is required for efficient Q cycle in the cytochrome b<\/em>6<\/sub>f<\/em> complex during cyclic electron flow. Kosugi* M,\u00a0Ozawa S-I<\/strong>, Takahashi Y, Kamei Y, Itoh S, Kudoh S, Kashino Y, and Koike H (2020)\u00a0 Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga,\u00a0Prasiola crispa<\/em>, harvested in Antarctica. Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, Dulger E, Bovdilova A, Caffarri S, Hippler M<\/strong>, Jahns* P (2020) PsbS contributes to photoprotection in Chlamydomonas reinhardtii<\/em> independently of energy dissipation. Oltmanns A, Hoepfner L, Scholz M, Zinzius K, Schulze S,\u00a0Hippler* M\u00a0<\/strong>(2020) Novel Insights Into N-Glycan Fucosylation and Core Xylosylation in C. reinhardtii<\/em>. Charoenwattanasatien R, Zinzius K, Scholz M, Wicke S, Tanaka H, Brandenburg JS, Marchetti GM, Ikegami T, Matsumoto T, Oda T, Sato M,\u00a0Hippler* M<\/strong>, Kurisu* G (2020) Calcium sensing via EF-hand 4 enables thioredoxin activity in the sensor-responder protein calredoxin in the green alga Chlamydomonas reinhardtii<\/em>. Lucas PL, Mathieu-Rivet E, Chan Tchi Song P, Oltmanns A, Loutelier-Bourhis C, Plasson C, Afonso C,\u00a0Hippler M<\/strong>, Lerouge P, Mati-Baouche N, Bardor* M (2020) Multiple xylosyltransferases heterogeneously xylosylate protein N-linked glycans in Chlamydomonas reinhardtii<\/em>. Muller-Schussele SJ, Wang R, Gutle DD, Romer J, Rodriguez-Franco M, Scholz M, Buchert F, Luth VM, Kopriva S, Dormann P, Schwarzlander M, Reski R, Hippler M<\/strong>, Meyer AJ (2020) Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. Schulze S, Adams Z, Cerletti M, De Castro R, Ferreira-Cerca S, Fufezan C, Gimenez MI, Hippler M<\/strong>, Jevtic Z, Knuppel R, Legerme G, Lenz C, Marchfelder A, Maupin-Furlow J, Paggi RA, Pfeiffer F, Poetsch A, Urlaub H, Pohlschroder M (2020) The Archaeal Proteome Project advances knowledge about archaeal cell biology through comprehensive proteomics.
\nPlant Physiol<\/em>: 197: <\/strong>kiae617 doi: 10.1093\/plphys\/kiae617
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/39560077<\/a><\/p>\n
\nAdv Sci (Weinh)<\/em>: e2413355 doi: 10.1002\/advs.202413355
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/40041987\/<\/a><\/p>\n
\nThe Plant Cell: <\/em>37<\/strong>: koaf042 doi: 10.1093\/plcell\/koaf042
\nhttps:\/\/doi.org\/10.1093\/plcell\/koaf042<\/a><\/p>\n
\nPlant Physiol:<\/em> 198<\/strong>: kiaf269 doi: 10.1093\/plphys\/kiaf269
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/40581738<\/a><\/p>\n
\nNew Phytol<\/em> 247<\/strong>: 1244-1262 doi: 10.1111\/nph.70167
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/40457522<\/a><\/p>\n
\nPlants<\/em> 13<\/strong>: 606
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/38475453\/<\/a><\/p>\n
\nFrontiers in Plant Science<\/em> 15<\/strong>: 1409116 doi: 10.3389\/fpls.2024.1409116
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/38916036\/<\/a><\/p>\n
\nPlants<\/em> 13<\/strong>: 1632. doi: 10.3390\/plants13121632
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/38916036\/<\/a><\/p>\n
\nProc Natl Acad Sci U S A<\/em> 121<\/strong>: e2400145121
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/38833465<\/a><\/p>\n
\nPlants<\/em> 13<\/strong>: 2114. doi: 10.3390\/plants13152114
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/39124233<\/a><\/p>\n
\nMol Cell Proteomics<\/em> 23<\/strong>: 100850. doi: 10.1016\/j.mcpro.2024.100850
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/39349166\/<\/a><\/p>\n
\nPlant J<\/em> 120<\/strong>: 1577-1590
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/39405462<\/a><\/p>\n
\nBiosci Rep<\/em> 43<\/strong>: BSR20220369
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/36477263<\/a><\/p>\n
\nProc Natl Acad Sci U S A <\/em>120<\/strong>: e2218187120
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/36716358\/<\/a><\/p>\n
\nhttps:\/\/doi.org\/10.1016\/B978-0-12-821430-5.00017-1<\/a><\/p>\n
\nPlant Physiol<\/em> 191<\/strong>:1803-1817
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/36516417\/<\/a><\/p>\n
\nPlant Physiol<\/em> 193<\/strong>:2122-2140
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/37474113\/<\/a><\/p>\n
\nCharacterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. Elife 12<\/strong>: RP88822<\/span>
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/37986577\/<\/a><\/p>\n
\nSci Total Environ<\/em> 905<\/strong>: 166909
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/37689191\/<\/a><\/p>\n
\nChloroplast ATP synthase biogenesis requires peripheral stalk subunits AtpF and ATPG and stabilization of atpE<\/em> mRNA by OPR protein MDE1.
\nThe Plant Journal<\/em> 116<\/strong>:1582-1599
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/37824282\/<\/a><\/p>\n
\nBiochem J<\/em> 479<\/strong>: 111-127
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/34981811\/<\/a><\/p>\n
\nPlant Cell Physiol<\/em> 63<\/strong>: 70-81
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/34592750<\/a><\/p>\n
\nJ Struct Biol<\/em> 214<\/strong>: 107829
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/34974142\/<\/a><\/p>\n
\nJ Plant Res<\/em> 135<\/strong>: 361-376
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/35146632\/ <\/a><\/p>\n
\nPlant Physiol <\/em>189<\/strong>: <\/em>329-343
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/35157085\/<\/a><\/p>\n
\n<\/strong>https:\/\/www.sciencedirect.com\/science\/article\/pii\/S2666386422000984<\/a><\/p>\n
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/36229605\/<\/a><\/p>\n
\nPhotosynthesis Research<\/em> 147<\/strong>:107-124<\/span>
\nhttps:\/\/pubmed.ncbi.nlm.nih.gov\/33269435\/<\/a><\/p>\n
\nBiochem J<\/em> 478<\/strong>: 2371-2384
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/34085703<\/a><\/p>\n
\nPlant Cell Physiol<\/em> 62<\/strong>: 1059-1062
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/34528684<\/a><\/p>\n
\nPlant Cell Physiol<\/em> 62<\/strong>: 1073-1081
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/33768246<\/a><\/p>\n
\nNature communications<\/em> 12<\/strong>: 5387
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/34508071<\/a><\/p>\n
\nBiochem J<\/em> 477<\/strong>: 1631-1650<\/span>
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/32267468<\/a><\/p>\n
\nBiochimica et Biophysica Acta<\/em> (BBA) – Bioenergetics 1861<\/strong>: 148139-148147
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/31825812<\/a><\/p>\n
\nBiochimica et biophysica acta<\/em> (BBA) – Bioenergetics 1861<\/strong>: 148183
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/32173384<\/a><\/p>\n
\nFront Plant Sci<\/em> 10<\/strong>: 1686
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/32010168<\/a><\/p>\n
\nJ Biol Chem<\/em> 295<\/strong>: 170-180
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/31776187<\/a><\/p>\n
\nPlant J<\/em>, 102<\/strong>:230-245<\/span>
\nhttps:\/\/www.ncbi.nlm.nih.gov\/pubmed\/31777161<\/a><\/p>\n
\nPlant J, <\/i>103<\/strong>: 1140-1154
\n <\/i>http:\/\/www.ncbi.nlm.nih.gov\/pubmed\/32365245<\/a><\/p>\n